非结构化语义精准搜索与挖掘
非结构化大数据指的是文本、图像与视频等信息,比传统结构化数据的信息量大得多,非结构化语义精准搜索与挖掘,是指在知识图谱的基础上真正理解用户的搜索请求,不再拘泥于用户所输入请求语句的字面本身,而是透过现象看本质,准确地捕捉到用户所输入语句后面的真正意图,并以此来进行搜索与挖掘,从而更准确地向用户返回最符合其需求的搜索结果。
大数据分析工具和技术,结合文本挖掘、机器学习以及本体建模,已成为进行军事安全威胁预测、检测和早期阶段预防的第一道防线。如今大数据和数据科技,通过改进协作和数据分析,减低了情报调查过程的繁琐程度,以便机构更轻易地检测到国家安全威胁。
通过分析恐怖分子日常各种信息,如通话、交通、购物、交友、电子邮件、聊天记录、视频等,对恐怖行为发生前进行预警和事后分析排查,越来越成为国际预防反恐的通用手段之一。
阿里巴巴集团CTO王坚曾表示:“今天任何人做事都不可能完全避开互联网,犯罪分子也不例外,敌人都用上了互联网手段,国家反恐必须用上大数据分析了。具备了数据分析的能力并不是说能百分百解决问题,但肯定可以大大提高反恐能力,以及实施恐怖行为的成本。”就像在红绿灯前装摄像头,不可能杜绝闯红绿灯的行为,但肯定减少。
事实上,国内也有科研院所、企业等机构进行了深入的研究。据国内学者相关研究成果显示,采用大数据分析模型对恐怖袭击历史数据中隐含的可演化信息进行学习,利用所获取的结果进行未来的恐怖袭击预测。预测过程中融入多步时间序列预测中的递推计算的思想,将每一步预测的不确定性作为下一次预测迭代的输入要素加以充分考虑。仿真结果证实,利用大数据分析的预测精度和效率都高于传统模式。据公开报道,通过对社交网络等信息的大数据挖掘,我国成功破获多个涉恐案件。而随着数据量的增长,利用大数据来打击犯罪的比例正在提高。
大数据是手段 预警预测是目的——
大数据的本质是系统通过处理采集到的所有数据,去提取其特征和共性的信息。通过大数据的处理使得所有的数据都有价值。通过大数据的处理,把传统认为没有价值的信息也能够产生非常有价值的信息,大数据的核心价值是通过数据分析达到预警预测的目的。因此,在反恐领域,借助大数据分析,从各种综合数据中,诸如社交网络信息、个人活动信息以及公安视频监控数据等等中能够预测出重点监控人员将要实施的恐怖袭击事件,并作出预警提示,成为未来视频监控发展目标。
我国对公安大数据的初步探索——
我国公安大数据方面的主要工作包括情报抽取、自动脱敏、分类、聚类、特征挖掘、关联挖掘等工作。情报抽取主要从文本表述中抽取各类案情要素,如嫌疑人姓名、身份证、性别、案由等;自动脱敏技术是将敏感信息自动替换,脱敏后的信息无法追溯到具体的个人,不再涉及公民隐私,而公安部门可以根据脱敏的对照库,实现信息还原。下图是我们利用公安某局脱敏后的15万数据自动生成的毒品、诈骗、盗窃三类警情的宏观可视化特征画像。
公安作为与海量证据、线索、数据、信息打交道的部门,使用好已有的数据信息,将门类庞杂、种类繁多的海量公安数据进行整合,建立统一的公安大数据语义知识网搜索平台,全面而深入挖掘信息之间的关联关系,这对于提取关键线索、提高办案效率具有非常重要的现实意义,更对于优化警力部署、提前制定预案,将违法犯罪事件扼杀在萌芽状态具有重大指导意义。
未来可以做的还有很多——
1、以知识图谱来整合各类数据:与美国情报界一样,公安当前的信息分散、孤立,部分信息不一定准确,大数据本身的特点就是价值密度低、参差不起,庞杂多样。因此,梳理公安的知识体系,将各类数据库整合为统一的知识图谱,以国际统一的本体网络语言OWL表示知识,并利用知识图谱技术实现公安大数据的推理与应用;2、构建公安大数据的业务平台,而不是简单的信息系统:与一般的公安信息系统不一样,我们需要提供并不是一个傻瓜式的查询输出系统,而是一个较好的工作平台,利用人机接口,辅助警方从复杂大数据中发现清晰的线索,帮助得到辅助问题的答案。简单的打个比方来说,公安大数据平台提供的不是直接的鱼,而是钓鱼的工具与方法。因此,公安的大数据平台不能做成简单的查询系统,而是业务平台,可以快速简便地开发各类SaaS(软件即服务)应用,警务人员可以查询信息,还可以简单灵活地组合各类模块,将业务人员的经验与技术人员的大数据技术紧密结合。
3、实施创新驱动发展战略,突破已有的思维定势,大力引进公安大数据相关的知识图谱技术、大数据可视化、语义分析计算等前沿技术。可以将公安大数据脱敏后大力开放,供国内专家学者作为研究开发使用,广泛地获取外脑支撑。
(责任编辑:安博涛)